论文标题

安全控制合成的固定时间参数适应

Fixed-Time Parameter Adaptation for Safe Control Synthesis

论文作者

Black, Mitchell, Arabi, Ehsan, Panagou, Dimitra

论文摘要

本文介绍了一类非线性,控制型,安全关键系统的基于参数适应的控制定律,但受添加剂,参数型模型不确定性为准。结果表明,不确定性是在固定时间内学习的,即在有限的时间内与初始参数估计无关,而无需在相关的回归矩阵上持续兴奋或等级条件。在估计的不确定性的误差上单调减少的结合是在提出的基于控制屏障功能的控制法中得出并使用的,以确保系统轨迹的安全性。然后证明,参数适应定律对系统对有限的测量噪声和非参数扰动是可靠的,因为估计的不确定性仍会收敛于固定时间中真实不确定性的已知邻域。该方法的优点在比较数值研究中突出显示,并且该方法在符合安全要求和未知风场的四轨道轨迹跟踪问题上进行了验证。

This paper introduces a parameter adaptation-based control law for a class of nonlinear, control-affine, safety-critical systems subject to additive, parameter-affine model uncertainty. It is shown that the uncertainty is learned in fixed-time, i.e., within a finite time independent of the initial parameter estimates, without requiring persistence of excitation or rank conditions on the associated regressor matrix. A monotonically decreasing bound on the error of the estimated uncertainty is derived and used in the proposed control barrier function-based control law for guaranteed safety of the system trajectories. It is then proven that the parameter adaptation law is robust to bounded measurement noise and non-parametric perturbations to the system in that the estimated uncertainty still converges to a known neighborhood of the true uncertainty in fixed-time. The advantages of the approach are highlighted in a comparative numerical study, and the method is validated on a quadrotor trajectory-tracking problem subject to safety requirements and an unknown wind field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源