论文标题

部分可观测时空混沌系统的无模型预测

Energy-Efficient Classification at the Wireless Edge with Reliability Guarantees

论文作者

Merluzzi, Mattia, Battiloro, Claudio, Di Lorenzo, Paolo, Strinati, Emilio Calvanese

论文摘要

从几个角度来看,在边缘学习是一项具有挑战性的任务,因为必须通过端设备(例如传感器)收集数据,即可能已预处理(例如数据压缩),并最终进行远程处理以输出培训和/或推理阶段的结果。这涉及异构资源,例如无线电,计算和学习相关参数。在这种情况下,我们提出了一种动态选择数据编码方案,本地计算资源,上行链路无线电参数和远程计算资源的算法,以在E2E延迟和推理可靠性约束下执行最低平均最终设备的能源消耗的分类任务。我们的方法不假定对时间变化的上下文参数的统计数据的任何先验知识,而基于这些参数的瞬时观察以及正确定义的状态变量的瞬时观察,它仅需要解决低复杂度确定性优化问题。基于卷积神经网络的图像分类的数值结果说明了我们方法在能源,延迟和推理可靠性之间取舍的有效性。

Learning at the edge is a challenging task from several perspectives, since data must be collected by end devices (e.g. sensors), possibly pre-processed (e.g. data compression), and finally processed remotely to output the result of training and/or inference phases. This involves heterogeneous resources, such as radio, computing and learning related parameters. In this context, we propose an algorithm that dynamically selects data encoding scheme, local computing resources, uplink radio parameters, and remote computing resources, to perform a classification task with the minimum average end devices' energy consumption, under E2E delay and inference reliability constraints. Our method does not assume any prior knowledge of the statistics of time varying context parameters, while it only requires the solution of low complexity per-slot deterministic optimization problems, based on instantaneous observations of these parameters and that of properly defined state variables. Numerical results on convolutional neural network based image classification illustrate the effectiveness of our method in striking the best trade-off between energy, delay and inference reliability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源