论文标题

学习量子动态的分布概括

Out-of-distribution generalization for learning quantum dynamics

论文作者

Caro, Matthias C., Huang, Hsin-Yuan, Ezzell, Nicholas, Gibbs, Joe, Sornborger, Andrew T., Cincio, Lukasz, Coles, Patrick J., Holmes, Zoë

论文摘要

泛化范围是评估量子机学习(QML)的培训数据要求的关键工具。最近的工作已经确定了量子神经网络(QNN)分布概括的保证,其中训练和测试数据是从相同的数据分布中汲取的。但是,目前尚无QML中分布概括的结果,即使在从不同的分布到训练分布的数据上,我们都需要训练有素的模型才能表现良好。在这里,我们证明了学习未知统一的任务,这是分数的概括。特别是,我们表明,只有培训产品州就可以学习统一对纠缠状态的行动。由于只能使用单量门门来制备产品状态,因此这可以在近期量子硬件上学习量子动态的前景,并进一步为量子电路的经典和量子汇编开辟了新的方法。

Generalization bounds are a critical tool to assess the training data requirements of Quantum Machine Learning (QML). Recent work has established guarantees for in-distribution generalization of quantum neural networks (QNNs), where training and testing data are drawn from the same data distribution. However, there are currently no results on out-of-distribution generalization in QML, where we require a trained model to perform well even on data drawn from a different distribution to the training distribution. Here, we prove out-of-distribution generalization for the task of learning an unknown unitary. In particular, we show that one can learn the action of a unitary on entangled states having trained only product states. Since product states can be prepared using only single-qubit gates, this advances the prospects of learning quantum dynamics on near term quantum hardware, and further opens up new methods for both the classical and quantum compilation of quantum circuits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源