论文标题

从您知道的人到阅读的内容:通过隐式社交网络增强科学建议

From Who You Know to What You Read: Augmenting Scientific Recommendations with Implicit Social Networks

论文作者

Kang, Hyeonsu B., Kocielnik, Rafal, Head, Andrew, Yang, Jiangjiang, Latzke, Matt, Kittur, Aniket, Weld, Daniel S., Downey, Doug, Bragg, Jonathan

论文摘要

不断增加的科学出版物速度需要快速识别相关论文的方法。虽然接受用户兴趣的神经推荐人可以提供帮助,但它们仍然会导致长期单调的建议论文列表。为了改善发现经验,我们介绍了多种新方法,以通过文本相关性消息来增强建议,以突出推荐论文与用户的出版物和互动历史记录之间的知识图形联系。我们探索由作者实体和仅使用引用的人介导的协会。在一项大规模的现实世界研究中,我们展示了我们的方法如何显着提高参与度 - 以及在作者介导的未来参与度 - 而无需对高引人注目的作者引入偏见。为了扩大较少出版或交互历史的用户的消息覆盖范围,我们开发了一种新颖的方法,该方法强调了与用户感兴趣的代理作者的联系,并在对照实验室研究中对其进行了评估。最后,我们将设计含义构成了未来基于图的消息的含义。

The ever-increasing pace of scientific publication necessitates methods for quickly identifying relevant papers. While neural recommenders trained on user interests can help, they still result in long, monotonous lists of suggested papers. To improve the discovery experience we introduce multiple new methods for \em augmenting recommendations with textual relevance messages that highlight knowledge-graph connections between recommended papers and a user's publication and interaction history. We explore associations mediated by author entities and those using citations alone. In a large-scale, real-world study, we show how our approach significantly increases engagement -- and future engagement when mediated by authors -- without introducing bias towards highly-cited authors. To expand message coverage for users with less publication or interaction history, we develop a novel method that highlights connections with proxy authors of interest to users and evaluate it in a controlled lab study. Finally, we synthesize design implications for future graph-based messages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源