论文标题
内核捆的稳定性和共同体在投影空间上
Stability and cohomology of kernel bundles on projective space
论文作者
论文摘要
在本文中,我们研究了矢量捆绑包的共同体,该矢量捆绑包在定义为内核或一般地图$ v_1 \ to v_2 $的投影空间上,其中$ v_i $是直接的线条捆绑包或某些出色的捆绑包。我们证明了一种渐近的共同体学消失了定理。我们表征了史坦纳捆绑包在投影空间上的稳定性。我们还给出了一个标准,以使Steiner捆绑包足够。
In this paper, we study the cohomology of vector bundles on projective space defined as kernels or cokernels of general maps $V_1 \to V_2$, where the $V_i$ are direct sums of line bundles or certain exceptional bundles. We prove an asymptotic cohomology vanishing theorem. We characterize the stability of general Steiner bundles on projective space. We also give a criterion for a Steiner bundle to be ample.