论文标题

关于有限词的广场数

On the number of squares in a finite word

论文作者

Brlek, Srečko, Li, Shuo

论文摘要

{\ em square}是$ uu $的单词。在本文中,我们证明,对于给定的有限单词$ w $,$ w $的不同平方因子的数量由$ | w | - | - | - | \ alphabet(w)|+1 $,其中$ | w | $表示$ w $ and $ w $ and $ | \ alphabet(w)的长度表示$ w $的不同字母的数量。该结果回答了1998年弗朗克尔(Fraenkel)和辛普森(Simpson)的猜想。

A {\em square} is a word of the form $uu$. In this paper we prove that for a given finite word $w$, the number of distinct square factors of $w$ is bounded by $|w|-|\Alphabet(w)|+1$, where $|w|$ denotes the length of $w$ and $|\Alphabet(w)|$ denotes the number of distinct letters in $w$. This result answers a conjecture of Fraenkel and Simpson stated in 1998.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源