论文标题

Xavier医生:可解释的医师对话和XAI评估的诊断

Doctor XAvIer: Explainable Diagnosis on Physician-Patient Dialogues and XAI Evaluation

论文作者

Ngai, Hillary, Rudzicz, Frank

论文摘要

我们介绍了基于BERT的诊断系统Xavier医生,该系统从转录的患者doctor对话中提取相关的临床数据,并使用功能归因方法解释了预测。我们提出了特征归因方法的新型性能图和评估度量:特征归因降低(FAD)曲线及其在曲线下的归一化区域(N-AUC)。 FAD曲线分析表明,综合梯度在解释诊断分类方面优于沙普利值。 Xavier医生在指定的实体识别和症状性相关分类中以0.97 F1分数和0.91 F1分类中的基线优于基线。

We introduce Doctor XAvIer, a BERT-based diagnostic system that extracts relevant clinical data from transcribed patient-doctor dialogues and explains predictions using feature attribution methods. We present a novel performance plot and evaluation metric for feature attribution methods: Feature Attribution Dropping (FAD) curve and its Normalized Area Under the Curve (N-AUC). FAD curve analysis shows that integrated gradients outperforms Shapley values in explaining diagnosis classification. Doctor XAvIer outperforms the baseline with 0.97 F1-score in named entity recognition and symptom pertinence classification and 0.91 F1-score in diagnosis classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源