论文标题
在最先进的功能匹配器中使用旋转不变功能的案例
A case for using rotation invariant features in state of the art feature matchers
论文作者
论文摘要
本文的目的是证明,通过简单地用可供转换和图像旋转的可式CNN替换骨干CNN,就可以使旋转的最先进的特征匹配器(LOFTR)更加健壮。实验表明,这种提升是在不降低普通照明和观点匹配序列上的性能的情况下获得的。
The aim of this paper is to demonstrate that a state of the art feature matcher (LoFTR) can be made more robust to rotations by simply replacing the backbone CNN with a steerable CNN which is equivariant to translations and image rotations. It is experimentally shown that this boost is obtained without reducing performance on ordinary illumination and viewpoint matching sequences.