论文标题
朝着快速,灵活和稳健的弱光图像增强
Toward Fast, Flexible, and Robust Low-Light Image Enhancement
论文作者
论文摘要
现有的低光图像增强技术不仅很难处理视觉质量和计算效率,而且在未知的复杂方案中通常也无效。在本文中,我们开发了一个新的自我校准照明(SCI)学习框架,以在现实世界中的低光场景中快速,灵活和健壮的亮点图像。具体来说,我们建立了一个级联的照明学习过程,并通过重量共享来处理这项任务。考虑到级联模式的计算负担,我们构建了自校准的模块,该模块意识到每个阶段的结果之间的收敛性,从而产生仅使用单个基本块进行推理的收益(但在以前的工作中尚未利用),从而大大降低了计算成本。然后,我们定义了无监督的训练损失,以提升可以适应一般场景的模型能力。此外,我们进行了全面的探索,以挖掘SCI的固有属性(在现有作品中缺乏),包括对操作不敏感的适应性(在不同简单操作的设置下获得稳定的性能)和模型 - IRRERRELERVERVANT(可应用于基于Illumination的现有作品以提高性能)。最后,大量的实验和消融研究充分表明了我们在质量和效率方面的优势。低光的面部检测和夜间语义分割的应用充分揭示了SCI的潜在实践值。源代码可在https://github.com/vis-opt-group/sci上找到。
Existing low-light image enhancement techniques are mostly not only difficult to deal with both visual quality and computational efficiency but also commonly invalid in unknown complex scenarios. In this paper, we develop a new Self-Calibrated Illumination (SCI) learning framework for fast, flexible, and robust brightening images in real-world low-light scenarios. To be specific, we establish a cascaded illumination learning process with weight sharing to handle this task. Considering the computational burden of the cascaded pattern, we construct the self-calibrated module which realizes the convergence between results of each stage, producing the gains that only use the single basic block for inference (yet has not been exploited in previous works), which drastically diminishes computation cost. We then define the unsupervised training loss to elevate the model capability that can adapt to general scenes. Further, we make comprehensive explorations to excavate SCI's inherent properties (lacking in existing works) including operation-insensitive adaptability (acquiring stable performance under the settings of different simple operations) and model-irrelevant generality (can be applied to illumination-based existing works to improve performance). Finally, plenty of experiments and ablation studies fully indicate our superiority in both quality and efficiency. Applications on low-light face detection and nighttime semantic segmentation fully reveal the latent practical values for SCI. The source code is available at https://github.com/vis-opt-group/SCI.