论文标题

低维

Hodge stratification in low dimension

论文作者

Bijakowski, Stéphane

论文摘要

我们定义并研究了用Pappas-roport条件定义的Shimura品种特殊纤维的HODGE分层,如果是低分支指数($ e \ e \ leq 3 $)。对于$ e \ leq 2 $,Hodge多边形会引起强大的分层。对于$ e = 3 $,需要引入几个多边形。他们描述了具有额外结构的差速器捆绑的同构类别,并在该品种上诱导了强大的分层。

We define and study the Hodge stratification for the special fiber of Shimura varieties defined with the Pappas-Rapoport condition, in the case of low ramification index ($e \leq 3$). For $e \leq 2$, the Hodge polygon induces a strong stratification. For $e=3$, one needs to introduce several polygons. They describe the isomorphism class of the sheaf of differentials with extra structure, and induce a strong stratification on the variety.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源