论文标题

Oseledets子空间的Hölder连续性,用于Banach空间上的线性共体

Hölder continuity of Oseledets subspaces for linear cocycles on Banach spaces

论文作者

Luo, Chiyi, Zhao, Yun

论文摘要

令$ f:x \ x $是紧凑型公制空间$ x $的可逆Lipschitz转换。鉴于Hölder连续可逆操作员在Banach空间和$ f $ invariant Ergodic措施上,本文在紧凑的一组任意大型措施上建立了Oseledets子空间的Hölder连续性。对于\ cite {simion16}而言,这将扩展到Banach空间上可逆操作员共生的结果。最后,本文证明了在不可逆转的情况下的Hölder连续性。

Let $f:X\to X$ be an invertible Lipschitz transformation on a compact metric space $X$. Given a Hölder continuous invertible operator cocycles on a Banach space and an $f$-invariant ergodic measure, this paper establishes the Hölder continuity of Oseledets subspaces over a compact set of arbitrarily large measure. This extends a result in \cite{Simion16} for invertible operator cocycles on a Banach space. Finally, this paper proves the Hölder continuity in the non-invertible case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源