论文标题

各向异性三角形 - 荷兰素空间和小波系数衰减,一参数扩张组,II

Anisotropic Triebel-Lizorkin spaces and wavelet coefficient decay over one-parameter dilation groups, II

论文作者

Koppensteiner, Sarah, van Velthoven, Jordy Timo, Voigtlaender, Felix

论文摘要

持续以前的工作,本文提供了各向异性Triebel-lizorkin的最大特征,$ \ dot {\ MathBf {f}}^α__{p,q} $对于$ p = \ infty $的终点案例,$ p = \ infty $和全部comenters参数$α\ in \ mathbb in \ mathbb in \ in $ n c $ n c =特别是,各向异性besov空间的表征{\ mathbf {b}}}^α_ {\ infty,\ infty} = \ dot {\ dot {\ mathbf {f}}} $ \ dot {\ mathbf {f}}^α_ {\ infty,q} $中的框架和riesz序列。

Continuing previous work, this paper provides maximal characterizations of anisotropic Triebel-Lizorkin spaces $\dot{\mathbf{F}}^α_{p,q}$ for the endpoint case of $p = \infty$ and the full scale of parameters $α\in \mathbb{R}$ and $q \in (0,\infty]$. In particular, a Peetre-type characterization of the anisotropic Besov space $\dot{\mathbf{B}}^α_{\infty,\infty} = \dot{\mathbf{F}}^α_{\infty,\infty}$ is obtained. As a consequence, it is shown that there exist dual molecular frames and Riesz sequences in $\dot{\mathbf{F}}^α_{\infty,q}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源