论文标题
Le Rang des Tissus de Nakai
Le rang des tissus de Nakai
论文作者
论文摘要
根据AlainHénaut的说法,如果平面4-Web被称为Nakai的网络,则如果每个点的切线与四个叶子的交叉相关性是恒定的,并且没有六角形的3-近网络。我们证明了Nakai的网络等级为0或1。我们给出了等级1的示例,并提供了一种构建此类示例的通用方式。
According to Alain Hénaut, a planar 4-web is called Nakai's web if the cross-ratio of the tangents to the four foliations at each point is constant and if it has no hexagonal 3-subweb. We prove that Nakai's webs have rank 0 or 1. We give examples with rank 1 and present a universal way to build such examples.