论文标题

时间窗口特里切特和基于公制的编辑距离,用于被动收集的轨迹

Time Window Frechet and Metric-Based Edit Distance for Passively Collected Trajectories

论文作者

Ding, Jiaxin, Gao, Jie, Skiena, Steven

论文摘要

现代本地化技术的进步和移动设备的广泛传播为我们提供了收集和开采人类流动轨迹的绝佳机会。在这项工作中,我们专注于被动收集的轨迹,这些轨迹是移动实体访问的时空位置序列。为了分析此类轨迹,关键部分是两种轨迹之间相似性的量度。我们提出了时间窗口特雷希特的距离,该距离可以在两个轨迹的点的点之间实施最大的时间分离,这些轨迹可以在Frechet距离的计算中配对,而基于度量的编辑距离则在计算插入和缺失成本的计算中结合了基础度量。使用这些度量,我们可以群集轨迹推断组运动模式。我们查看$ k $的问题,它要求每个群集至少具有$ k $轨迹。我们证明,在编辑距离,基于公制的编辑距离和jaccard距离的情况下,K-GETHATH仍然是NP-HARD。最后,我们在离散的Frechet距离上改善了先前的结果,并表明没有强大的子次级时间,近似因子在二维设置中没有小于$ 1.61 $,除非Seth失败。

The advances of modern localization techniques and the wide spread of mobile devices have provided us great opportunities to collect and mine human mobility trajectories. In this work, we focus on passively collected trajectories, which are sequences of time-stamped locations that mobile entities visit. To analyse such trajectories, a crucial part is a measure of similarity between two trajectories. We propose the time-window Frechet distance, which enforces the maximum temporal separation between points of two trajectories that can be paired in the calculation of the Frechet distance, and the metric-based edit distance which incorporates the underlying metric in the computation of the insertion and deletion costs. Using these measures, we can cluster trajectories to infer group motion patterns. We look at the $k$-gather problem which requires each cluster to have at least $k$ trajectories. We prove that k-gather remains NP-hard under edit distance, metric-based edit distance and Jaccard distance. Finally, we improve over previous results on discrete Frechet distance and show that there is no strongly sub-quadratic time with approximation factor less than $1.61$ in two dimensional setting unless SETH fails.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源