论文标题

符号司法司法,双形式对称性和4点振幅在6D中

Symplectic Grassmannians, dual conformal symmetry and 4-point amplitudes in 6D

论文作者

Bering, Klaus, Pazderka, Michal

论文摘要

我们研究了一种基于代数的新方法,以寻找用于散射幅度的硕士公式。我们的主要动机是4D $ \ MATHCAL {N} = 4 $ SYM的巨大振幅,因此我们考虑了6d Grassmannian公式,我们可以利用无质量的运动学。接下来,我们使用对称性参数,尤其是6D双形式对称性,将其推广到任意双重共形权重。假设在plücker坐标(即未成年人)方面有理性的ansatz,则这种方法会导致一组代数方程。例如,我们明确地找到了4点散射幅度的解决方案,直到比例性常数。

We investigate a new algebra-based approach of finding Grassmannian formulas for scattering amplitudes. Our prime motivation is massive amplitudes of 4D $\mathcal{N}=4$ SYM, and therefore we consider a 6D Grassmannian formula, where we can take advantage of massless kinematics. We next use symmetry arguments, and in particular, 6D dual conformal symmetry generalized to arbitrary dual conformal weights. Assuming a rational ansatz in terms of Plücker coordinates (i.e. minors) for the integrand, this approach leads to a set of algebraic equations. As an example, we explicitly find the solution for 4-point scattering amplitudes up to proportionality constants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源