论文标题

用半参数贝叶斯推断靶向功能参数

Targeting functional parameters with semiparametric Bayesian inference

论文作者

Meng, Vivian Y., Stephens, David A.

论文摘要

典型的贝叶斯推论需要通过可能性参数化来识别参数,该参数邀请批评的批评不如频繁的框架灵活,并且经过错误指定。尽管在非参数模型空间下的功能参数推断可以避免错误指定,但不存在灵活的贝叶斯半参数模型,该模型将允许在任何一般功能参数上完全控制边缘先验。我们介绍了$θ$ a的技术,该技术有助于我们将非参数模型操纵到直接针对任何功能参数的半磁头模型中。该方法允许对任何定义为经验分布的功能的估计器来绘制贝叶斯概率陈述,而无需可能具有似然函数,从而在因果推理和审查等问题等问题的情况下提供了贝叶斯分析的途径,而在没有得到良好认可的可能性功能的情况下。

Typical Bayesian inference requires parameter identification via likelihood parameterization, which has invited criticism for being less flexible than the Frequentist framework and subject to misspecification. Though misspecification may be avoided by functional parameter inference under a nonparametric model space, there does not exist a flexible Bayesian semiparametric model that would allow full control over the marginal prior over any general functional parameter. We present the technique of $θ$-augmentation which helps us manipulate nonparametric models into semiparametric ones that directly target any functional parameter. The method allows Bayesian probabilistic statements to be drawn for any estimator that is defined as a functional of the empirical distribution without requiring a likelihood function, thus providing a path to Bayesian analysis in problems like causal inference and censoring where there do not exist well-accepted likelihood functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源