论文标题
Moiréless石墨烯多层中的声音 - 音波介导的超导性
Acoustic-phonon-mediated superconductivity in moiréless graphene multilayers
论文作者
论文摘要
我们研究了Moiréless石墨烯多层,特别是Bernal双层石墨烯,Rhombohedral Trilayer石墨烯和ABCA堆叠的四边形二甲雷烯之间的声音 - 介导的超导性与远程库仑相互作用之间的竞争。在这些石墨烯多层中,声音子可以通过电子音波耦合来实现自旋 - 单词和旋转三曲线配对,以及内部公共配对($ s $ - 波旋转旋转singlet和$ f $ -F $ -Wave-Wave Spin-triplet)是主要的频道。我们的理论自然解释了Bernal双层石墨烯和菱形三层石墨烯的最新实验发现,我们进一步预测了由电子 - phonon相互作用引起的ABCA四边形石墨烯中超导性的存在。特别是,我们证明了声音介导的超导性超导性在菱形三角烯石墨烯和ABCA三边形石墨烯中广泛掺杂,而超导性仅存在于伯纳尔双层素中范·霍夫(Van Hove)附近的范围范围内的范围狭窄范围。我们理论的关键特征是与适当的van霍夫奇异性和库仑抗逆势效应(所谓的“ $μ^*$效应”)的逼真的带状结构,与声子诱导的超导配对相对。我们还讨论了Intervalley散射如何抑制自旋三旋转的超导性。我们的工作提供了基于电子声音 - 相互作用诱导的石墨烯超导性的详细预测,应在将来的实验中进行研究。
We investigate the competition between acoustic-phonon-mediated superconductivity and the long-range Coulomb interaction in moiréless graphene multilayers, specifically, Bernal bilayer graphene, rhombohedral trilayer graphene, and ABCA-stacked tetralayer graphene. In these graphene multilayers, the acoustic phonons can realize, through electron-phonon coupling, both spin-singlet and spin-triplet pairings, and the intra-sublattice pairings ($s$-wave spin-singlet and $f$-wave spin-triplet) are the dominant channels. Our theory naturally explains the distinct recent experimental findings in Bernal bilayer graphene and rhombohedral trilayer graphene, and we further predict existence of superconductivity in ABCA tetralayer graphene arising from electron-phonon interactions. In particular, we demonstrate that the acoustic-phonon-mediated superconductivity prevails over a wide range of doping in rhombohedral trilayer graphene and ABCA tetralayer graphene while superconductivity exists only in a narrow range of doping near the Van Hove singularity in Bernal bilayer graphene. Key features of our theory are the inclusion of realistic band structures with the appropriate Van Hove singularities and Coulomb repulsion effects (the so-called "$μ^*$ effect") opposing the phonon-induced superconducting pairing. We also discuss how intervalley scatterings can suppress the spin-triplet spin-polarized superconductivity. Our work provides detailed prediction based on electron-acoustic-phonon-interaction-induced graphene superconductivity, which should be investigated in future experiments.