论文标题

使用深度学习完全鉴定出不准确的迁移地下偏移收集的复杂盐几何形状

Complete identification of complex salt geometries from inaccurate migrated subsurface offset gathers using deep learning

论文作者

Muller, Ana Paula O., Costa, Jesse C., Bom, Clecio R., Faria, Elisangela L., Klatt, Matheus, Teixeira, Gabriel, de Albuquerque, Marcelo P., de Albuquerque, Marcio P.

论文摘要

从迁移的图像中划定盐包裹物是一种耗时的活动,依赖于高度人类策划的分析,并且受到解释错误或可用方法的局限性。我们建议使用从不准确的速度模型产生的迁移图像(具有合理的沉积物速度近似值,但没有盐含量)来预测使用卷积神经网络(CNN)形状的正确盐夹杂物。我们的方法依赖于地下公共图像聚集在零偏移周围的沉积物的反射集中,并将盐反射的能量传播到大偏移量上。使用综合数据,我们训练了U-NET,将常见的下张地下图像用作CNN的输入通道,将正确的盐掩模作为网络输出。该网络学会了以很高的精度预测盐夹杂物掩盖。此外,当应用于先前未引入的合成基准数据集时,它的性能也很好。我们的训练过程调整了U-NET,以成功地从部分集中的地下偏移图像中成功学习复杂的盐体的形状。

Delimiting salt inclusions from migrated images is a time-consuming activity that relies on highly human-curated analysis and is subject to interpretation errors or limitations of the methods available. We propose to use migrated images produced from an inaccurate velocity model (with a reasonable approximation of sediment velocity, but without salt inclusions) to predict the correct salt inclusions shape using a Convolutional Neural Network (CNN). Our approach relies on subsurface Common Image Gathers to focus the sediments' reflections around the zero offset and to spread the energy of salt reflections over large offsets. Using synthetic data, we trained a U-Net to use common-offset subsurface images as input channels for the CNN and the correct salt-masks as network output. The network learned to predict the salt inclusions masks with high accuracy; moreover, it also performed well when applied to synthetic benchmark data sets that were not previously introduced. Our training process tuned the U-Net to successfully learn the shape of complex salt bodies from partially focused subsurface offset images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源