论文标题
詹姆斯·韦伯(James Webb)的发现时代:挖掘第一个大型黑洞的光谱签名
The Age of Discovery with the James Webb: Excavating the Spectral Signatures of the First Massive Black Holes
论文作者
论文摘要
詹姆斯·韦伯(James Webb)太空望远镜(JWST)将打开最遥远的宇宙的新窗口,并在第一个星系中推出超级质量黑洞(BHS)的早期增长。为了准备深入的JWST成像调查,了解高红移的种子BHS的颜色选择至关重要。我们对以$ z \ gtrsim 8 $的金属贫困星系中的数百万太阳能质量增强BHS的频谱能量分布进行建模,并将后处理线转移计算计算为辐射流体动力学仿真结果。用Nircam和Miri Broad-Band过滤器进行十公斤的曝光足以检测$ l _ {\ rm bol} \ rm bol} \ simeq 10^{45}〜{\ rm erg〜s}}^{-1} $的辐射BHS的辐射通量。虽然连续颜色与典型的低$ z $类星体相似,但强h $α$线排放和静止框架等效宽度$ {\ rm ew} _ {\ rm ers rest} \ rm rest} \ simeq 1300〜 $ $如此突出,以至于线条如此突出会影响宽带颜色。独特的颜色,例如f356w $ - $ f560w $ \ gtrsim 1 $ at $ 7 <z <8 $和f444w $ - $ f770w $ \ gtrsim 1 $ $ 9 <z <z <12 $,为快速生长的种子BHS的光度量选择提供了可靠的标准。此外,NIRSPEC对低离子化排放线的观察可以测试BH是否通过超级埃德丁顿的密集吸积盘馈入。
The James Webb Space Telescope (JWST) will open a new window of the most distant universe and unveil the early growth of supermassive black holes (BHs) in the first galaxies. In preparation for deep JWST imaging surveys, it is crucial to understand the color selection of high-redshift accreting seed BHs. We model the spectral energy distribution of super-Eddington accreting BHs with millions of solar masses in metal-poor galaxies at $z\gtrsim 8$, applying post-process line transfer calculations to radiation hydrodynamical simulation results. Ten kilosecond exposures with the NIRCam and MIRI broad-band filters are sufficient to detect the radiation flux from the seed BHs with bolometric luminosities of $L_{\rm bol}\simeq 10^{45}~{\rm erg~s}^{-1}$. While the continuum colors are similar to those of typical low-$z$ quasars, strong H$α$ line emission with a rest-frame equivalent width ${\rm EW}_{\rm rest}\simeq 1300~Å$ is so prominent that the line flux affects the broad-band colors significantly. The unique colors, for instance F356W$-$F560W $\gtrsim 1$ at $7<z<8$ and F444W$-$F770W $\gtrsim 1$ at $9<z<12$, provide robust criteria for photometric selection of the rapidly growing seed BHs. Moreover, NIRSpec observations of low-ionization emission lines can test whether the BH is fed via a dense accretion disk at super-Eddington rates.