论文标题

Gazeonce:实时多人凝视估计

GazeOnce: Real-Time Multi-Person Gaze Estimation

论文作者

Zhang, Mingfang, Liu, Yunfei, Lu, Feng

论文摘要

基于外观的凝视估计旨在预测单个图像的3D眼睛凝视方向。尽管最近基于深度学习的方法表现出了出色的性能,但他们通常在每个输入图像中都假设一个经过校准的面孔,并且无法实时输出多人凝视。但是,对于现实世界中,必须同时对野外多人进行凝视估计。在本文中,我们提出了第一个单阶段的端到端凝视估计方法,即Gazeonce,该方法能够同时预测图像中多个面(> 10)的凝视方向。此外,我们设计了一条复杂的数据生成管道,并提出了一个新的数据集Mpsgaze,其中包含具有3D注视地面真相的多个人的完整图像。实验结果表明,我们的统一框架不仅提供了更快的速度,而且与最新方法相比,凝视估计误差较低。该技术在与多个用户的实时应用程序中很有用。

Appearance-based gaze estimation aims to predict the 3D eye gaze direction from a single image. While recent deep learning-based approaches have demonstrated excellent performance, they usually assume one calibrated face in each input image and cannot output multi-person gaze in real time. However, simultaneous gaze estimation for multiple people in the wild is necessary for real-world applications. In this paper, we propose the first one-stage end-to-end gaze estimation method, GazeOnce, which is capable of simultaneously predicting gaze directions for multiple faces (>10) in an image. In addition, we design a sophisticated data generation pipeline and propose a new dataset, MPSGaze, which contains full images of multiple people with 3D gaze ground truth. Experimental results demonstrate that our unified framework not only offers a faster speed, but also provides a lower gaze estimation error compared with state-of-the-art methods. This technique can be useful in real-time applications with multiple users.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源