论文标题

非线性浅水波,具有垂直奇粘度

Nonlinear shallow-water waves with vertical odd viscosity

论文作者

Doak, Alex, Baardink, Guido, Milewski, Paul A, Souslov, Anton

论文摘要

通过科里奥利力或奇异应力破坏流体中的详细平衡对表面波的动力学产生了深远的影响。在这里,我们在具有和不具有科里奥利效应的垂直奇粘度的三维流体中探索弱和强烈的非线性波。我们的模型描述了由几乎垂直涡流丝组成的浅流体的自由表面,它们垂直于表面。我们发现,这种构型中的奇数粘度诱导了先前未探索的浅水波中的非线性效应,这是由于表面上的两种应力和整体中的应力梯度引起的。通过假设非线性弱,我们发现了降低的方程式,包括Korteweg-de Vries(KDV),Ostrovsky和Kadomtsev-Petviashvilli(KP)方程,具有修改的系数。在足够大的奇数粘度下,色散会改变符号,从而允许紧凑的二维孤立波。我们表明,奇数粘度和表面张力对自由表面具有相同的影响,但流体流动中的特征不同。我们的结果描述了许多涡流系统的集体动力学,这些动力也可能发生在海洋和大气地球物理中。

The breaking of detailed balance in fluids through Coriolis forces or odd-viscous stresses has profound effects on the dynamics of surface waves. Here we explore both weakly and strongly non-linear waves in a three-dimensional fluid with vertical odd viscosity with and without the Coriolis effect. Our model describes the free surface of a shallow fluid composed of nearly vertical vortex filaments, which all stand perpendicular to the surface. We find that the odd viscosity in this configuration induces previously unexplored non-linear effects in shallow-water waves, arising from both stresses on the surface and stress gradients in the bulk. By assuming weak nonlinearity, we find reduced equations including Korteweg-de Vries (KdV), Ostrovsky, and Kadomtsev-Petviashvilli (KP) equations with modified coefficients. At sufficiently large odd viscosity, the dispersion changes sign, allowing for compact two-dimensional solitary waves. We show that odd viscosity and surface tension have the same effect on the free surface, but distinct signatures in the fluid flow. Our results describe the collective dynamics of many-vortex systems, which can also occur in oceanic and atmospheric geophysics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源