论文标题
在Lipschitz上,在配备有共轭不变规范的组上发挥作用
On Lipschitz functions on groups equipped with conjugation-invariant norms
论文作者
论文摘要
我们观察到,当且仅当它是在生成集中界定的部分准畸形时,配备了双词度量的组上的函数是Lipschitz。我们还表明,始终通过抗对称均质部分准态检测到一个未发生的元素。我们为Lipschitz功能提供了一般的均质化程序,并将一组上的部分准态与其渐近锥上的差异相关。
We observe that a function on a group equipped with a bi-invariant word metric is Lipschitz if and only if it is a partial quasimorphism bounded on the generating set. We also show that an undistorted element is always detected by an antisymmetric homogeneous partial quasimorphisms. We provide a general homogenisation procedure for Lipschitz functions and relate partial quasimorphisms on a group to ones on its asymptotic cones.