论文标题

线性表示的线图的非几何表光谱序列

Non-Geometric Cospectral Mates of Line Graphs with a Linear Representation

论文作者

Ihringer, Ferdinand

论文摘要

为了发生发病率的几何$ \ MATHCAL {g} =(\ Mathcal {p},\ Mathcal {l},\ text {i})$,\ text {i})$ $ \ mathcal {t} _n _n^*(\ nron-non-non-draph in-Graph in-Graph cors optral in-Graph in-graph non-cortrrict $ \ $ \ MATHCAL {G} $的$γ$。 作为一个应用程序,我们表明,对于$ h \ geq 2 $和$ 0 <m <h $,有强烈的常规图,带有参数$(v,k,λ,μ)=(2^{2H}(2^{2^{m+h}+2^m-2^h),2^h+1),2^h+1) (2^m-1))$不是订单$(s,t,α)的部分几何形状的点图=((2^h+1)(2^m-1),2^h-1,2^m-1)$。

For an incidence geometry $\mathcal{G} = (\mathcal{P}, \mathcal{L}, \text{I})$ with a linear representation $\mathcal{T}_n^*(\mathcal{K})$, we apply WQH switching to construct a non-geometric graph $Γ'$ cospectral with the line graph $Γ$ of $\mathcal{G}$. As an application, we show that for $h \geq 2$ and $0 < m < h$, there are strongly regular graphs with parameters $(v, k, λ, μ) = (2^{2h} (2^{m+h}+2^m-2^h), 2^h (2^h+1)(2^m-1), 2^h (2^{m+1}-3), 2^h (2^m-1))$ which are not point graphs of partial geometries of order $(s,t,α) = ((2^h+1)(2^m-1), 2^h-1, 2^m-1)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源