论文标题

亚音速和超音速气流到冷凝表面

Subsonic and supersonic gas flows to condensation surface

论文作者

Kryukov, A. P., Zhakhovsky, V. V., Levashov, V. Yu.

论文摘要

使用一致的原子和动力学理论方法研究了气流中的强烈热量转移。简单的力矩方法用于求解非平衡气流及其凝结的玻尔兹曼动力学方程(BKE),而分子动力学(MD)模拟相似流量用于验证BKE结果。我们证明,BKE可以提供稳定的流量曲线,接近从稳态气流的亚音速和超音速态中获得的MD模拟。令人惊讶的是,凝结的基本理论显示出BKE结果,在广泛的气流参数中具有良好的精度。 MD证实,稳定的超音速气流在表面在明显的温度下凝结在表面上的明显温度下,该表面可以解释为可渗透的凝结活塞。最后一次产生冲击压缩,但与常见的不可渗透活塞相比,完全吸收了传入的气流。冲击锋将超音速和亚音速区域上的蒸气流划分,压缩气体的凝结发生在亚音速方案中。讨论了完整的部分冷凝制度。结果表明,高于休克雨诺尼奥特(Hugoniot)确定的一定表面温度,失控的冲击前部停止了流入气体,并停止了冷凝水。

Intense heat-mass transfer in a gas flow to a condensation surface is studied with the consistent atomistic and kinetic theory methods. The simple moment method is utilized for solving the Boltzmann kinetic equation (BKE) for the nonequilibrium gas flow and its condensation, while molecular dynamics (MD) simulation of a similar flow is used for verification of BKE results. We demonstrate that BKE can provide the steady flow profiles close to those obtained from MD simulations in both subsonic and supersonic regimes of steady gas flows. Surprisingly, the elementary theory of condensation is shown with BKE results to have a good accuracy in a wide range of gas flow parameters. MD confirms that a steady supersonic gas flow condensates on a surface at the distinctive temperature after formation of a standing shock front in reference to this surface, which can be interpreted as a permeable condensating piston. The last produces the shock compression but completely absorbs incoming gas flow in contrast to a common impermeable piston. The shock front divides the vapor flow on the supersonic and subsonic zones, and condensation of compressed gas happens in the subsonic regime. The complete and partial condensation regimes are discussed. It is shown that above the certain surface temperatures determined by the shock Hugoniot the runaway shock front stops an inflow gas and condensation is ceased.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源