论文标题

物理知识的量子通信网络:对量子互联网的愿景

Physics-Informed Quantum Communication Networks: A Vision Towards the Quantum Internet

论文作者

Chehimi, Mahdi, Saad, Walid

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Quantum communications is a promising technology that will play a fundamental role in the design of future networks. In fact, significant efforts are being dedicated by both the quantum physics and the classical communications communities on developing new architectures, solutions, and practical implementations of quantum communication networks (QCNs). Although these efforts led to various advances in today's technologies, there still exists a non-trivial gap between the research efforts of the two communities on designing and optimizing the performance of QCNs. For instance, most prior works by the classical communications community ignore important quantum physics-based constraints when designing QCNs. For example, many existing works on entanglement distribution do not account for the decoherence of qubits inside quantum memories and, thus, their designs become impractical since they assume an infinite lifetime of quantum states. In this paper, we bring forth a novel analysis of the performance of QCNs in a physics-informed manner, by relying on the quantum physics principles that underly the different components of QCNs. The need of the physics-informed approach is then assessed and its fundamental role in designing practical QCNs is analyzed across various open research areas. Moreover, we identify novel physics-informed performance metrics and controls that enable QCNs to leverage the state-of-the-art advancements in quantum technologies to enhance their performance. Finally, we analyze multiple pressing challenges and open research directions in QCNs that must be treated using a physics-informed approach to lead practically viable results. Ultimately, this work attempts to bridge the gap between the classical communications and the quantum physics communities in the area of QCNs to foster the development of the future communication networks towards the quantum Internet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源