论文标题
在视觉惯性初始化中学习的单眼深度先验
Learned Monocular Depth Priors in Visual-Inertial Initialization
论文作者
论文摘要
视觉惯性进程(VIO)是当今大多数AR/VR和自主机器人系统的姿势估计主链,无论是学术界和工业的。但是,这些系统对关键参数的初始化高度敏感,例如传感器偏见,重力方向和度量标准。在实际场景中,很少满足高parallax或可变加速度假设(例如,悬停空中机器人,智能手机AR用户不用手机打手机的智能手机AR),经典的视觉惯性初始化配方通常会变得不良条件和/或无法有意义地融合。在本文中,我们专门针对这些低兴奋的场景针对野外用法至关重要的视觉惯性初始化。我们建议通过将新的基于学习的测量结果纳入更高级别的输入来规避经典视觉惯性结构(SFM)初始化的局限性。我们利用学到的单眼深度图像(单深度)来限制特征的相对深度,并通过共同优化其尺度和偏移来将单深度升级到度量标尺。与视觉惯性初始化的经典配方相比,我们的实验表明,问题条件有显着改善,并且相对于公共基准的最先进,尤其是在低兴奋的情况下,相对于最先进的表现,具有显着的准确性和鲁棒性提高。我们进一步将这种改进扩展到现有的探射系统中的实现,以说明我们改进的初始化方法对产生跟踪轨迹的影响。
Visual-inertial odometry (VIO) is the pose estimation backbone for most AR/VR and autonomous robotic systems today, in both academia and industry. However, these systems are highly sensitive to the initialization of key parameters such as sensor biases, gravity direction, and metric scale. In practical scenarios where high-parallax or variable acceleration assumptions are rarely met (e.g. hovering aerial robot, smartphone AR user not gesticulating with phone), classical visual-inertial initialization formulations often become ill-conditioned and/or fail to meaningfully converge. In this paper we target visual-inertial initialization specifically for these low-excitation scenarios critical to in-the-wild usage. We propose to circumvent the limitations of classical visual-inertial structure-from-motion (SfM) initialization by incorporating a new learning-based measurement as a higher-level input. We leverage learned monocular depth images (mono-depth) to constrain the relative depth of features, and upgrade the mono-depths to metric scale by jointly optimizing for their scales and shifts. Our experiments show a significant improvement in problem conditioning compared to a classical formulation for visual-inertial initialization, and demonstrate significant accuracy and robustness improvements relative to the state-of-the-art on public benchmarks, particularly under low-excitation scenarios. We further extend this improvement to implementation within an existing odometry system to illustrate the impact of our improved initialization method on resulting tracking trajectories.