论文标题

高功率电子设备的三元宽带隙氧化

Ternary Wide Band Gap Oxides for High-Power Electronics Identified Computationally

论文作者

Garrity, Emily McDonald, Lee, Cheng-Wei, Gorai, Prashun, Tellekamp, Brooks, Zakutayev, Andriy, Stevanović, Vladan

论文摘要

随着电网格变得越来越可再生能源符合能源,将需要新型的半导体,这些半导体可以承受高功率,高压和高温。宽带隙(WBG)半导体倾向于显示较大的故障场,从而允许高工作电压。目前正在探索的电力电子产品的WBG材料成本很高(GAN),难以合成高质量的单晶(SIC)和大规模(钻石,BN),具有较低的导热率($β$ -GA $ -GA $ _2 $ _3 $ _3 $),或者无法合适地掺杂(ALN)。我们使用第一原理计算和现有传输模型对1,340个已知金属氧化物的新半导体进行了计算搜索。我们计算出功绩(BFOM)和晶格导热率($κ_L$)的BALIGA数字,以识别N型功率电子产品的顶级候选者。我们发现40个大多数是$κ_l$ $β$ -GA $ _2 $ o $ $ _3 $和N型BFOM高的三元氧化物,而N型BFOM高于SIC和GAN。其中,出现了几个物质类别,包括2-2-7个化学计量训练thortveitites和Pyrochlores,II-IV尖晶石和方解石型硼酸盐。在这些课程中,我们提出了$ _2 $ ge $ _2 $ o $ _7 $,mg $ _2 $ _2 $ geo $ _4 $和Inbo $ _3 $,因为它们最有利的是根据我们的初步评估N型掺杂的,并且可以作为单晶或薄膜或薄膜杂物进行种植。这些材料可以帮助推动未来电网的电力电子设备。

As electricity grids become more renewable energy-compliant, there will be a need for novel semiconductors that can withstand high power, high voltage, and high temperatures. Wide band gap (WBG) semiconductors tend to exhibit large breakdown field, allowing high operating voltages. Currently explored WBG materials for power electronics are costly (GaN), difficult to synthesize as high-quality single crystals (SiC) and at scale (diamond, BN), have low thermal conductivity ($β$-Ga$_2$O$_3$), or cannot be suitably doped (AlN). We conduct a computational search for novel semiconductors across 1,340 known metal-oxides using first-principles calculations and existing transport models. We calculate the Baliga figure of merit (BFOM) and lattice thermal conductivity ($κ_L$) to identify top candidates for n-type power electronics. We find 40 mostly ternary oxides that have higher $κ_L$ than $β$-Ga$_2$O$_3$ and higher n-type BFOM than SiC and GaN. Among these, several material classes emerge, including 2-2-7 stoichiometry thortveitites and pyrochlores, II-IV spinels, and calcite-type borates. Within these classes, we propose In$_2$Ge$_2$O$_7$, Mg$_2$GeO$_4$, and InBO$_3$ as they are the most favorable for n-type doping based on our preliminary evaluation and could be grown as single crystals or thin film heterostructures. These materials could help advance power electronic devices for the future grid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源