论文标题
Rangeudf:来自3D点云的语义表面重建
RangeUDF: Semantic Surface Reconstruction from 3D Point Clouds
论文作者
论文摘要
我们提出了RangeUDF,这是一个新的基于隐式表示的框架,可从点云中恢复连续3D场景表面的几何形状和语义。与只能模拟封闭3D表面的占用字段或签名距离字段不同,我们的方法不仅限于任何类型的拓扑。与现有的未签名距离场不同,我们的框架没有任何表面歧义。此外,我们的RangeUDF可以共同估计连续表面的精确语义。我们方法的关键是范围内无符号的距离函数以及面向表面的语义分割模块。广泛的实验表明,LanduDF清楚地超过了四点云数据集上表面重建的最新方法。此外,Langudf展示了多个看不见的数据集的卓越概括能力,这对于所有现有方法几乎是不可能的。
We present RangeUDF, a new implicit representation based framework to recover the geometry and semantics of continuous 3D scene surfaces from point clouds. Unlike occupancy fields or signed distance fields which can only model closed 3D surfaces, our approach is not restricted to any type of topology. Being different from the existing unsigned distance fields, our framework does not suffer from any surface ambiguity. In addition, our RangeUDF can jointly estimate precise semantics for continuous surfaces. The key to our approach is a range-aware unsigned distance function together with a surface-oriented semantic segmentation module. Extensive experiments show that RangeUDF clearly surpasses state-of-the-art approaches for surface reconstruction on four point cloud datasets. Moreover, RangeUDF demonstrates superior generalization capability across multiple unseen datasets, which is nearly impossible for all existing approaches.