论文标题

大型时间序列中多尺度同步相关搜索的统一方法 - 完整版

A Unified Approach for Multi-Scale Synchronous Correlation Search in Big Time Series -- Full Version

论文作者

Ho, Nguyen, Ho, Van Long, Pedersen, Torben Bach, Vu, Mai, Biscio, Christophe A. N.

论文摘要

物联网传感器的广泛部署已使跨不同域的非常大的时间序列的集合可以从中进行高级分析以找到未知的关系,最重要的是它们之间的相关性。但是,当前的相关搜索方法序列仅限于单个时间尺度和简单的关系类型,并且无法有效地处理噪声。本文介绍了集成的同步相关搜索(ISYCOS)框架,以查找大时间序列中的多尺度相关性。具体而言,ISYCO将自上而下的方法和自下而上的方法整合到一个能够使用共同信息(MI)从大时间序列中有效提取复杂窗口的相关性的单个自动配置框架。此外,ISYCOS还包括一种基于MI的新理论,可以识别数据中的噪声,并用于进行修剪以提高ISYCOS性能。此外,我们设计了ISYCO的分布式版本,可以在火花集群中扩展以处理大时间序列。我们对合成和现实世界数据集的广泛实验评估表明,ISYCO可以在给定数据集上自动配置以找到复杂的多尺度相关性。修剪和优化可以将ISYCOS性能提高到一个数量级,并且分布式ISYCOS可以在计算群集上线性扩展。

The wide deployment of IoT sensors has enabled the collection of very big time series across different domains, from which advanced analytics can be performed to find unknown relationships, most importantly the correlations between them. However, current approaches for correlation search on time series are limited to only a single temporal scale and simple types of relations, and cannot handle noise effectively. This paper presents the integrated SYnchronous COrrelation Search (iSYCOS) framework to find multi-scale correlations in big time series. Specifically, iSYCOS integrates top-down and bottom-up approaches into a single auto-configured framework capable of efficiently extracting complex window-based correlations from big time series using mutual information (MI). Moreover, iSYCOS includes a novel MI-based theory to identify noise in the data, and is used to perform pruning to improve iSYCOS performance. Besides, we design a distributed version of iSYCOS that can scale out in a Spark cluster to handle big time series. Our extensive experimental evaluation on synthetic and real-world datasets shows that iSYCOS can auto-configure on a given dataset to find complex multi-scale correlations. The pruning and optimisations can improve iSYCOS performance up to an order of magnitude, and the distributed iSYCOS can scale out linearly on a computing cluster.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源