论文标题
紧凑型行星系统印刷的原星盘的子结构
Substructures in protoplanetary disks imprinted by compact planetary systems
论文作者
论文摘要
在原星盘中观察到的子结构可能是嵌入式行星雕刻间隙或创建涡流的路标。这些行星的推断质量与低质量行星相比,尽管它们的丰度较低,但这些行星的质量通常属于Jovian制度,部分原因是以前的作品通常假定单个子结构(一个间隙或涡流)是由一个行星引起的。在这项工作中,我们研究了由Neptune样行星($ \ sim10-30 \; m_ \ oplus $)组成的紧凑系统的可能烙印,并表明长期存在的涡旋是一个普遍的涡流($ΔA$)以下$ \ sim8 $ \ sim8 $ h $ h _ planem $ h _ plane clane feeption-plation feeption-plane feeper flue plane feepents feepent。在一个单个星球无法产生长寿涡流的模拟中,两行星系统可以在两个制度中以至少5,000美元的范围保存它们:i)在稳定的lagrange点$ l_4 $ $ l_4 $和$ l_5 $周围的完全共享的密度差距,以最紧凑的行星Pairs Pairs Pairs Pairs Pairs Pairs($ΔA); ii)部分共享的间隙($ΔA\ sim 4.6-8 \; h _ {\ rm p} $)通过罗斯比波不稳定性在行星之间形成涡流。后一种情况可以产生巨大纵横比的涡流,降低到$ \ sim3 $,并且可以在3:2(2:1)捕获的行星中发生磁盘的平均 - 动感共振,以圆盘的纵横比为$ h \ gtrsim 0.033 $($ h \ h \ gtrsim 0.057 $)。我们建议他们的寿命长,这是由于邻近行星发射的螺旋密度波的相互作用所维持的。总体而言,我们的结果表明,用海王星质量行星区分紧凑型系统的烙印是密度间隙内的长寿命,而密度间隙内的涡旋是比单个样品差距较浅的固定间隙宽度。
The substructures observed in protoplanetary disks may be the signposts of embedded planets carving gaps or creating vortices. The inferred masses of these planets often fall in the Jovian regime despite their low abundance compared to lower-mass planets, partly because previous works often assume that a single substructure (a gap or vortex) is caused by a single planet. In this work, we study the possible imprints of compact systems composed of Neptune-like planets ($\sim10-30\;M_\oplus$) and show that long-standing vortices are a prevalent outcome when their inter-planetary separation ($Δa$) falls below $\sim8$ times $H_{\rm p}$ -- the average disk's scale height at the planets locations. In simulations where a single planet is unable to produce long-lived vortices, two-planet systems can preserve them for at least $5,000$ orbits in two regimes: i) fully-shared density gaps with elongated vortices around the stable Lagrange points $L_4$ and $L_5$ for the most compact planet pairs ($Δa \lesssim 4.6\; H_{\rm p}$); ii) partially-shared gaps for more widely spaced planets ($Δa \sim 4.6 - 8\;H_{\rm p}$) forming vortices in a density ring between the planets through the Rossby wave instability. The latter case can produce vortices with a wide range of aspect ratios down to $\sim3$ and can occur for planets captured into the 3:2 (2:1) mean-motion resonances for disk's aspects ratios of $h\gtrsim 0.033$ ($h\gtrsim 0.057$). We suggest that their long lifetimes are sustained by the interaction of spiral density waves launched by the neighboring planets. Overall, our results show that distinguishing imprint of compact systems with Neptune-mass planets are long-lived vortices inside the density gaps, which in turn are shallower than single-planet gaps for a fixed gap width.