论文标题
具有广义网络流的分布式云网络的分散控制
Decentralized Control of Distributed Cloud Networks with Generalized Network Flows
论文作者
论文摘要
新兴的分布式云体系结构,例如FOG和移动边缘计算,在有效地提供实时流处理应用程序(也称为增强信息服务)中起着越来越重要的作用,例如工业自动化和元体验(例如,扩展现实,现实,浸润性游戏)。尽管此类应用程序需要多个用户/设备共享处理流并同时消耗的处理流,但现有技术缺乏有效的机制来应对其固有的多播性质,从而导致不必要的流量冗余和网络拥塞。在本文中,我们建立了一个统一的框架,用于分布式云网络控制,并具有广义(混合铸造)流量流,允许优化所需的数据包处理,转发和复制操作的分布式执行。我们首先表征了新的控制框架下的扩大的多播网络稳定区域(相对于单播对应物)。然后,我们设计了一个新颖的排队系统,该系统允许根据当前的目的地集进行调度数据包,并利用Lyapunov Drift-Plus-Penalty控制理论来开发第一个完全分散的,吞吐量和成本优势的算法,以进行多播流控制。数值实验验证了分析结果,并证明了在现有网络控制策略上提出的设计的性能增长。
Emerging distributed cloud architectures, e.g., fog and mobile edge computing, are playing an increasingly important role in the efficient delivery of real-time stream-processing applications (also referred to as augmented information services), such as industrial automation and metaverse experiences (e.g., extended reality, immersive gaming). While such applications require processed streams to be shared and simultaneously consumed by multiple users/devices, existing technologies lack efficient mechanisms to deal with their inherent multicast nature, leading to unnecessary traffic redundancy and network congestion. In this paper, we establish a unified framework for distributed cloud network control with generalized (mixed-cast) traffic flows that allows optimizing the distributed execution of the required packet processing, forwarding, and replication operations. We first characterize the enlarged multicast network stability region under the new control framework (with respect to its unicast counterpart). We then design a novel queuing system that allows scheduling data packets according to their current destination sets, and leverage Lyapunov drift-plus-penalty control theory to develop the first fully decentralized, throughput- and cost-optimal algorithm for multicast flow control. Numerical experiments validate analytical results and demonstrate the performance gain of the proposed design over existing network control policies.