论文标题
单轴随机介质中涡流线的繁殖和流动
Depinning and flow of a vortex line in an uniaxial random medium
论文作者
论文摘要
我们通过数值和分析研究通过3维无序介质驱动的单个定向弹性弦的动力学。在准义限制中,字符串在驾驶方向上是超级划线,粗糙度指数$ζ_ {\ parallel} = 1.25 \ pm 0.01 $,动态指数$ z _ {\ parallel} = 1.43 \ pm 0.01 $,相关指数$ 0.0.0.0.0.0.0.0.0.0.0.0.0.0 c = pm 0.02 $ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.02 $ 0.和雪崩大小的指数$τ_ {\ Parallel} = 1.09 \ pm 0.03 $。在横向方向上,我们发现$ζ_ {\ perp} = 0.5 \ pm 0.01 $,$ z _ {\ perp} = 2.27 \ pm 0.05 $,和$τ_ {\ perp} = 1.17 \ pm 0.06 $。我们表明,正如Ertas和Kardar(EK)在1996年提出的平面近似(PA)所预测的那样,横向波动不会改变驱动方向上的关键指数。与功能重归其化组和仿真相比,我们检查PA是否有力强度相关器。随机键(RB)和随机场(RF)障碍都产生单个普遍性类别,与二维随机培养基中的弹性弦没有区别。尽管满足了$ z _ {\ perp} = z _ {\ parallel}+1/ν$和$ν= 1/(2-ζ_ {\ parallel})$的EK满足,但横向运动是布朗尼人的,而brownian则是一个向前运动的时钟设置。这意味着$ζ_\ perp =(2-d)/2 $,与ek不同。在小驱动速度下,局部平行位移的分布具有负偏度,而在横向方向上,它是高斯。对于大尺度,可以通过各向异性有效温度来描述系统。在快速流动方案中,本地位移分布在方向上都变为高斯,有效温度随着$ t^{\ perp} _ {\ tt eff} \ sim 1/v $和$ t^{\ parallel} _ {\ tt eff} _ {\ tt eff} \ sim 1/v^3 $的$ aff} \大约t^{\ Parallel} _ {\ tt eff} \ sim 1/v $用于RF。
We study numerically and analytically the dynamics of a single directed elastic string driven through a 3-dimensional disordered medium. In the quasistatic limit the string is super-rough in the driving direction, with roughness exponent $ζ_{\parallel} = 1.25\pm 0.01$, dynamic exponent $z_{\parallel}= 1.43 \pm 0.01$, correlation-length exponent $ν= 1.33 \pm 0.02$, depinning exponent $β= 0.24\pm 0.01$, and avalanche-size exponent $τ_{\parallel} = 1.09 \pm 0.03$. In the transverse direction we find $ζ_{\perp} = 0.5 \pm 0.01$, $z_{\perp} = 2.27 \pm 0.05$, and $τ_{\perp} =1.17\pm 0.06$. We show that transverse fluctuations do not alter the critical exponents in the driving direction, as predicted by the planar approximation (PA) proposed in 1996 by Ertas and Kardar (EK). We check the PA for the force-force correlator, comparing to the functional renormalization group and simulations. Both Random-Bond (RB) and Random-Field (RF) disorder yield a single universality class, indistinguishable from the one of an elastic string in a 2-dimensional random medium. While $z_{\perp}=z_{\parallel}+1/ν$ and $ν=1/(2-ζ_{\parallel})$ of EK are satisfied, the transversal movement is that of a Brownian, with a clock set locally by the forward movement. This implies $ζ_\perp = (2-d)/2$, distinct from EK. At small driving velocities the distribution of local parallel displacements has a negative skewness, while in the transverse direction it is a Gaussian. For large scales, the system can be described by anisotropic effective temperatures. In the fast-flow regime the local displacement distributions become Gaussian in both directions and the effective temperatures vanish as $T^{\perp}_{\tt eff}\sim 1/v$ and $T^{\parallel}_{\tt eff}\sim 1/v^3$ for RB and as $T^{\perp}_{\tt eff} \approx T^{\parallel}_{\tt eff} \sim 1/v$ for RF.