论文标题

来自非交通性几何形状的可集成模型,应用到3D双重性

Integrable Models From Non-Commutative Geometry With Applications to 3D Dualities

论文作者

Sharapov, Alexey, Skvortsov, Evgeny

论文摘要

我们讨论了通过内部变形构建的新的强质同苯二代数。这种变形具有许多显着的特性。在最简单的情况下,每一个共同代数的单参数家族都会导致$ l_ \ infty $ -Algebra,可用于构建经典的集成模型。此类$ l_ \ infty $ - 代数的另一个应用与Chern-simons矢量模型中的三维隆体化二元性有关,在该模型中,它实现了稍微破裂的更高自旋对称性的想法。一大类的关联代数源自泊松歧管的变形量化。但是,$ 3D $ - 实用二元性的应用需要扩展到泊松孔的变形量化的扩展,这是一个空旷的问题。 $ 3D $ - 实用双重性可以通过证明$ l_ \ infty $ -Algebra的独特类别可以用作相关功能来证明。

We discuss a new class of strong homotopy algebras constructed via inner deformations. Such deformations have a number of remarkable properties. In the simplest case, every one-parameter family of associative algebras leads to an $L_\infty$-algebra that can be used to construct a classical integrable model. Another application of this class of $L_\infty$-algebras is related with the three-dimensional bosonization duality in Chern--Simons vector models, where it implements the idea of the slightly-broken higher spin symmetry. One large class of associative algebras originates from Deformation Quantization of Poisson Manifolds. Applications to the $3d$-bosonization duality require, however, an extension to deformation quantization of Poisson Orbifolds, which is an open problem. The $3d$-bosonization duality can be proven by showing that there is a unique class of invariants of the $L_\infty$-algebra that can serve as correlation functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源