论文标题
空间分辨率对模拟推断大气量的影响
Effects of spatial resolution on inferences of atmospheric quantities from simulations
论文作者
论文摘要
小规模的过程被认为对于太阳大气的动力学很重要。尽管数值分辨率从根本上限制了它们在MHD模拟中的包含,但同一标称分辨率的实际观察仍然应包含子分辨率效应的烙印。这意味着,来自给定分辨率的模拟的合成可观察物可能与同一分辨率下的真实可观察物可能无法直接相媲美。因此,有趣的是研究如何根据具有不同数值分辨率的模拟基于合成光谱的推论进行比较,以及这些差异是否在光谱后是否持续存在,在空间上降解为共同的分辨率。我们的目的是使用非常简单的方法来比较从相同初始大气中以三种不同的数值分辨率运行的逼真的3D辐射磁流体动力学(RMHD)模拟获得的合成光谱,使用非常简单的方法来推断视线速度和磁场。此外,我们研究了不同的空间分辨率如何影响从Stic反演代码检索的结果。我们发现,尽管所有三个模拟的简单推论都揭示了相同的大规模趋势,但即使在空间涂抹后,较高的分辨率也会产生更多细粒结构和更极端的视线速度/磁场。我们还看到迹象表明,子分辨率对降解光谱的影响会导致反转系统错误,并且这些误差随着所包括的子分辨率效应的数量而增加。然而,幸运的是,我们发现包括依次更多的子分辨率会产生较小的额外效果。即,对于逐渐延长的子分辨率效应的重要性降低存在明显的趋势。
Small scale processes are thought to be important for the dynamics of the solar atmosphere. While numerical resolution fundamentally limits their inclusion in MHD simulations, real observations at the same nominal resolution should still contain imprints of sub-resolution effects. This means that the synthetic observables from a simulation of given resolution might not be directly comparable to real observables at the same resolution. It is thus of interest to investigate how inferences based on synthetic spectra from simulations with different numerical resolutions compare, and whether these differences persist after the spectra have been spatially degraded to a common resolution. We aim to compare synthetic spectra obtained from realistic 3D radiative magnetohydrodynamic (rMHD) simulations run at three different numerical resolutions from the same initial atmosphere, using very simple methods for inferring line-of-sight velocities and magnetic fields. Additionally we examine how the differing spatial resolution impacts the results retrieved from the STiC inversion code. We find that while the simple inferences for all three simulations reveal the same large-scale tendencies, the higher resolutions yield more fine-grained structures and more extreme line-of-sight velocities/magnetic fields in concentrated spots even after spatial smearing. We also see indications that the imprints of sub-resolution effects on the degraded spectra result in systematic errors in the inversions, and that these errors increase with the amount of sub-resolution effects included. Fortunately, however, we find that including successively more sub-resolution yields smaller additional effects; i.e. there is a clear trend of diminishing importance for progressively finer sub-resolution effects.