论文标题

Flutas:多相流的GPU加速有限差代码

FluTAS: A GPU-accelerated finite difference code for multiphase flows

论文作者

Crialesi-Esposito, Marco, Scapin, Nicolo, Demou, Andreas D., Rosti, Marco Edoardo, Costa, Pedro, Spiga, Filippo, Brandt, Luca

论文摘要

我们介绍了流体传输加速求解器Flutas,这是一种具有热效应的多相流的可伸缩GPU代码。该代码为两流体系统求解了不可压缩的Navier-Stokes方程,并具有直接的基于FFT的Poisson求解器用于压力方程。两种流体之间的界面用流体(VOF)方法的体积表示,该方法可保存质量,非常适合复杂的流动,这要归功于其处理拓扑变化的能力。通过Boussinesq近似,明确求解了能量方程并与动量方程式结合。该代码以模块化的方式进行了构想,因此可以独立使用不同的数值方法,可以修改现有的例程,并且可以简单而可持续的方式包含新的日常方法。 Flutas用现代的Fortran编写,并使用Hybrid MPI/OpenMP在仅CPU版本中并行化,并在GPU实施中使用OpenACC指令加速。我们提出了不同的基准来验证代码,并进行了两个大规模模拟湍流多相流的基本兴趣:命中和两层雷利 - 贝纳德对流中的等温乳液。 Flutas是通过MIT许可分发的,并源于几位科学家的协作努力,旨在成为研究复杂多相流的灵活工具。

We present the Fluid Transport Accelerated Solver, FluTAS, a scalable GPU code for multiphase flows with thermal effects. The code solves the incompressible Navier-Stokes equation for two-fluid systems, with a direct FFT-based Poisson solver for the pressure equation. The interface between the two fluids is represented with the Volume of Fluid (VoF) method, which is mass conserving and well suited for complex flows thanks to its capacity of handling topological changes. The energy equation is explicitly solved and coupled with the momentum equation through the Boussinesq approximation. The code is conceived in a modular fashion so that different numerical methods can be used independently, the existing routines can be modified, and new ones can be included in a straightforward and sustainable manner. FluTAS is written in modern Fortran and parallelized using hybrid MPI/OpenMP in the CPU-only version and accelerated with OpenACC directives in the GPU implementation. We present different benchmarks to validate the code, and two large-scale simulations of fundamental interest in turbulent multiphase flows: isothermal emulsions in HIT and two-layer Rayleigh-Bénard convection. FluTAS is distributed through a MIT license and arises from a collaborative effort of several scientists, aiming to become a flexible tool to study complex multiphase flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源