论文标题
通过狄龙开关方法的扩展,低C分化的均匀函数
Low c-differentially uniform functions via an extension of Dillon's switching method
论文作者
论文摘要
在本文中,我们将Dillon的切换方法推广,以表征通过此方法构建的功能的确切$ C $不同的均匀性。更确切地说,我们在可控数量的坐标中使用已知的$ c $差异均匀性修改了一些PCN/APCN和其他功能,以呈现更多此类功能。我们介绍了该方法在构建PCN和APCN功能方面的几个应用程序,相对于所有$ C \ neq 1 $。作为副产品,我们概括了[Y.的一些结果。 Wu,N。Li,X。Zeng,{\ em New PCN和APCN在有限字段上函数},设计代码crypt。 89(2021),2637--2651]。计算结果渲染功能低差异均匀性以及其他良好的加密特性在整个论文中均散布。
In this paper we generalize Dillon's switching method to characterize the exact $c$-differential uniformity of functions constructed via this method. More precisely, we modify some PcN/APcN and other functions with known $c$-differential uniformity in a controllable number of coordinates to render more such functions. We present several applications of the method in constructing PcN and APcN functions with respect to all $c\neq 1$. As a byproduct, we generalize some result of [Y. Wu, N. Li, X. Zeng, {\em New PcN and APcN functions over finite fields}, Designs Codes Crypt. 89 (2021), 2637--2651]. Computational results rendering functions with low differential uniformity, as well as, other good cryptographic properties are sprinkled throughout the paper.