论文标题
具有构象柔韧性的药物结合的匹配网络的预训练
Pre-training of Equivariant Graph Matching Networks with Conformation Flexibility for Drug Binding
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The latest biological findings observe that the traditional motionless 'lock-and-key' theory is not generally applicable because the receptor and ligand are constantly moving. Nonetheless, remarkable changes in associated atomic sites and binding pose can provide vital information in understanding the process of drug binding. Based on this mechanism, molecular dynamics (MD) simulations were invented as a useful tool for investigating the dynamic properties of a molecular system. However, the computational expenditure limits the growth and application of protein trajectory-related studies, thus hindering the possibility of supervised learning. To tackle this obstacle, we present a novel spatial-temporal pre-training method based on the modified Equivariant Graph Matching Networks (EGMN), dubbed ProtMD, which has two specially designed self-supervised learning tasks: an atom-level prompt-based denoising generative task and a conformation-level snapshot ordering task to seize the flexibility information inside MD trajectories with very fine temporal resolutions. The ProtMD can grant the encoder network the capacity to capture the time-dependent geometric mobility of conformations along MD trajectories. Two downstream tasks are chosen, i.e., the binding affinity prediction and the ligand efficacy prediction, to verify the effectiveness of ProtMD through linear detection and task-specific fine-tuning. We observe a huge improvement from current state-of-the-art methods, with a decrease of 4.3% in RMSE for the binding affinity problem and an average increase of 13.8% in AUROC and AUPRC for the ligand efficacy problem. The results demonstrate valuable insight into a strong correlation between the magnitude of conformation's motion in the 3D space (i.e., flexibility) and the strength with which the ligand binds with its receptor.