论文标题
部分可观测时空混沌系统的无模型预测
Modeling Cosmological Perturbations of Thermal Inflation
论文作者
论文摘要
我们考虑了一个由物质,辐射和真空成分组成的简单系统,以模拟热膨胀对原始扰动进化的影响。真空能量在统治之前放大了原始模式进入地平线的模式,使其可能可观察到,并且所得的传递函数反映了相变和能量内容。为了确定转移函数,我们遵循从辐射统治期间从地平线外部到地平线的曲率扰动到真空统治期间的井外,并以恒定的辐射密度超浮射面评估,这是适用于热膨胀的情况。传递函数的形状取决于物质辐射平等时真空能量与辐射的比率,我们用$ \ upsilon $表示,并且具有两个特征性量表,$ k _ {\ rm a} $和$ k _ {\ rm b} $,对应于辐射等于辐射等于的水平尺寸,并相互分配。如果$ \ upsilon \ ll 1 $,则宇宙会经历辐射,物质和真空统治时代,并且转移功能是$ k \ ll k _ {\ rm b} $平面的,振幅$ 1/5 $振荡,$ 1/5 $ for $ k _ { $ 1 $ for $ k \ gg k _ {\ rm a} $。对于$ \ upsilon \ gg 1 $,物质统治时代消失了,传输功能以$ k \ ll k _ {\ rm b} $降低为平坦,并以$ k \ gg gg k _ {\ rm b} $的幅度$ 1 $振荡。
We consider a simple system consisting of matter, radiation and vacuum components to model the impact of thermal inflation on the evolution of primordial perturbations. The vacuum energy magnifies the primordial modes entering the horizon before its domination, making them potentially observable, and the resulting transfer function reflects the phase changes and energy contents. To determine the transfer function, we follow the curvature perturbation from well outside the horizon during radiation domination to well outside the horizon during vacuum domination and evaluate it on a constant radiation density hypersurface, as is appropriate for the case of thermal inflation. The shape of the transfer function is determined by the ratio of vacuum energy to radiation at matter-radiation equality, which we denote by $\upsilon$, and has two characteristic scales, $k_{\rm a}$ and $k_{\rm b}$, corresponding to the horizon sizes at matter radiation equality and the beginning of the inflation, respectively. If $\upsilon \ll 1$, the universe experiences radiation, matter and vacuum domination eras and the transfer function is flat for $k \ll k_{\rm b}$, oscillates with amplitude $1/5$ for $ k_{\rm b} \ll k \ll k_{\rm a}$ and oscillates with amplitude $1$ for $k \gg k_{\rm a}$. For $\upsilon \gg 1$, the matter domination era disappears, and the transfer function reduces to being flat for $k \ll k_{\rm b}$ and oscillating with amplitude $1$ for $k \gg k_{\rm b}$.