论文标题

部分可观测时空混沌系统的无模型预测

Herz-slice spaces and applications

论文作者

Lu, Yuan, Zhou, Jiang, Wang, Songbai

论文摘要

令$α\ in \ mathbb r^n $,$ t \ in(0,\ infty)$,$ p \ in(0,\ infty] $,$ r \ in(1,\ infty)$和$ q \ in [1,\ infty] $。 ke_ {q,r}^{α,p})_ t(\ mathbb r^n)$,非均匀的HERZ-SLICE空间$(Ke_ {q,r}^{α,α,p})_ t(\ Mathbb r^n)$,并显示了这些属性,并显示了这些属性。

Let $α\in\mathbb R^n$, $t\in(0,\infty)$, $p\in(0,\infty]$, $r\in(1,\infty)$ and $q\in[1,\infty]$. We introduce the homogeneous Herz-slice space $(\dot KE_{q,r}^{α,p})_t(\mathbb R^n)$, the non-homogeneous Herz-slice space $(KE_{q,r}^{α,p})_t(\mathbb R^n)$ and show some properties of them. As an application, the bounds for the Hardy--Littlewood maximal operator on these spaces is considered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源