论文标题

一种基于区域的深度学习方法,用于自动零售结帐

A Region-Based Deep Learning Approach to Automated Retail Checkout

论文作者

Shoman, Maged, Aboah, Armstrong, Morehead, Alex, Duan, Ye, Daud, Abdulateef, Adu-Gyamfi, Yaw

论文摘要

在常规零售商店中自动化产品结帐流程是一项任务,该任务旨在对社会一般影响产生巨大影响。为此,可靠的深度学习模型可以使自动化产品进行快速客户结帐,这可以使这个目标成为现实。在这项工作中,我们提出了一种基于新型的,基于区域的深度学习方法,以使用自定义的Yolov5对象检测管道和DeepSort算法自动化产品计数。我们在具有挑战性的现实世界测试视频方面的结果表明,我们的方法可以将其预测推广到足够的准确性水平,并且具有足够快的运行时,可以保证部署到现实世界中的商业环境。我们提出的方法在2022年AI City Challenge(轨道4)中获得第四名,实验验证数据的F1得分为0.4400。

Automating the product checkout process at conventional retail stores is a task poised to have large impacts on society generally speaking. Towards this end, reliable deep learning models that enable automated product counting for fast customer checkout can make this goal a reality. In this work, we propose a novel, region-based deep learning approach to automate product counting using a customized YOLOv5 object detection pipeline and the DeepSORT algorithm. Our results on challenging, real-world test videos demonstrate that our method can generalize its predictions to a sufficient level of accuracy and with a fast enough runtime to warrant deployment to real-world commercial settings. Our proposed method won 4th place in the 2022 AI City Challenge, Track 4, with an F1 score of 0.4400 on experimental validation data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源