论文标题
使用机器学习的自动硬件特洛伊木马插入
Automatic Hardware Trojan Insertion using Machine Learning
论文作者
论文摘要
由于当前的水平业务模型促进了对不信任的第三方知识产权(IPS),CAD工具和设计设施的依赖,因此硬件特洛伊木马的攻击已成为对半导体行业的严重威胁。开发针对硬件特洛伊木马攻击的有效对策需要:(1)针对给定设计的可行的特洛伊木马攻击空间的快速而可靠的探索,以及(2)一套高质量的特洛伊木马插入的基准,以符合特定标准。后者对于对设计/验证解决方案的开发和评估至关重要,以实现针对特洛伊木马攻击的可量化保证。尽管现有的静态基准为比较不同的对策提供了基线,但它们仅列举了完整的特洛伊木马设计空间中有限数量的手工制作的特洛伊木马。为了实现这些双重目标,在本文中,我们提出了模仿自动特洛伊木马插入的新型AI引导框架,可以通过模仿一小部分已知木马的特性来创建大量有效的特洛伊木马,以实现给定设计。尽管存在使用固定的特洛伊木马模板自动插入特洛伊木马实例的工具,但他们无法分析已知的特洛伊木马攻击,以创建准确捕获威胁模型的新实例。模拟于两个主要步骤:(1)它在多维空间中分析了现有特洛伊木马种群的结构和功能功能,以训练机器学习模型并生成大量给定设计的“虚拟特洛伊木马”,(2)接下来,它通过与其功能/结构的内部logic结构匹配的功能/结构结构,将它们绑定到设计中。我们通过探索多个用例开发了一个完整的工具流,用于模仿,广泛评估了框架,并量化了其有效性以证明高度有希望的结果。
Due to the current horizontal business model that promotes increasing reliance on untrusted third-party Intellectual Properties (IPs), CAD tools, and design facilities, hardware Trojan attacks have become a serious threat to the semiconductor industry. Development of effective countermeasures against hardware Trojan attacks requires: (1) fast and reliable exploration of the viable Trojan attack space for a given design and (2) a suite of high-quality Trojan-inserted benchmarks that meet specific standards. The latter has become essential for the development and evaluation of design/verification solutions to achieve quantifiable assurance against Trojan attacks. While existing static benchmarks provide a baseline for comparing different countermeasures, they only enumerate a limited number of handcrafted Trojans from the complete Trojan design space. To accomplish these dual objectives, in this paper, we present MIMIC, a novel AI-guided framework for automatic Trojan insertion, which can create a large population of valid Trojans for a given design by mimicking the properties of a small set of known Trojans. While there exist tools to automatically insert Trojan instances using fixed Trojan templates, they cannot analyze known Trojan attacks for creating new instances that accurately capture the threat model. MIMIC works in two major steps: (1) it analyzes structural and functional features of existing Trojan populations in a multi-dimensional space to train machine learning models and generate a large number of "virtual Trojans" of the given design, (2) next, it binds them into the design by matching their functional/structural properties with suitable nets of the internal logic structure. We have developed a complete tool flow for MIMIC, extensively evaluated the framework by exploring several use-cases, and quantified its effectiveness to demonstrate highly promising results.