论文标题

基于积极学习的非侵入模型订单降低

Active-learning-based non-intrusive Model Order Reduction

论文作者

Zhuang, Qinyu, Hartmann, Dirk, Bungartz, Hans Joachim, Lorenzi, Juan Manuel

论文摘要

模型降低(MOR)技术可以为快速模拟提供紧凑的数值模型。与侵入性的MOR方法不同,非侵入性MOR不需要访问完整的模型(FOM),尤其是系统矩阵。由于非侵入性的MOR方法强烈依赖FOM的快照,因此构建良好的快照集变得至关重要。在这项工作中,我们提出了一种新的活跃学习方法,并提出了两种新颖性。我们的方法的一个新颖想法是,从减少国家空间的估计中使用了从系统状态的单个步骤快照。使用基于错误估计器的高斯过程回归(GPR)支持的贪婪策略选择这些状态。此外,我们基于可能是正确的(PAC)学习引入了独立于用例的验证策略。在这项工作中,我们使用人工神经网络(ANN)来识别减少的顺序模型(ROM),但是该方法可以类似地应用于其他ROM识别方法。通过2-D热传导和3-D真空炉模型测试了整个工作流程的性能。由于所需的用户互动和培训策略与特定用例无关的培训策略,因此所提出的方法为创建所谓的可执行数字双胞胎(DTS)提供了巨大的工业用法潜力。

The Model Order Reduction (MOR) technique can provide compact numerical models for fast simulation. Different from the intrusive MOR methods, the non-intrusive MOR does not require access to the Full Order Models (FOMs), especially system matrices. Since the non-intrusive MOR methods strongly rely on the snapshots of the FOMs, constructing good snapshot sets becomes crucial. In this work, we propose a new active learning approach with two novelties. A novel idea with our approach is the use of single-time step snapshots from the system states taken from an estimation of the reduced-state space. These states are selected using a greedy strategy supported by an error estimator based Gaussian Process Regression (GPR). Additionally, we introduce a use case-independent validation strategy based on Probably Approximately Correct (PAC) learning. In this work, we use Artificial Neural Networks (ANNs) to identify the Reduced Order Model (ROM), however the method could be similarly applied to other ROM identification methods. The performance of the whole workflow is tested by a 2-D thermal conduction and a 3-D vacuum furnace model. With little required user interaction and a training strategy independent to a specific use case, the proposed method offers a huge potential for industrial usage to create so-called executable Digital Twins (DTs).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源