论文标题
形成行星磁盘中的灰尘聚集体的单体有多大?:来自定量光学和近红外极光法的见解
How large are the monomers of dust aggregates in planet-forming disks?: Insights from quantitative optical and near-infrared polarimetry
论文作者
论文摘要
上下文:灰尘聚集体的组成颗粒(单体)的大小是直接影响构成行星磁盘骨料生长的最不确定的参数之一。尽管它的重要性,但单体大小尚未受到磁盘观测的有意义的限制。目的:我们尝试从行星形成磁盘的光学和近红外(IR)偏光观测中得出单体大小。方法:我们使用称为$ t $ -matrix方法的精确数值方法对尘埃骨料分散的光的线性极化程度进行全面参数调查。我们研究了单体大小,骨料大小,孔隙率和组成对极化程度的影响。然后将获得的结果与光学和近IR波长处的几个行星形成圆盘的极化部分进行比较。结果:表明,除非单体大小参数小于一个或两个,否则聚集体的极化程度敏感地取决于单体大小。将模拟结果与磁盘观测值进行比较,我们发现单体半径不超过$ 0.4〜μm。因此,推断的单体大小类似于太阳系灰尘聚集体的亚基尺寸和星际晶粒的最大尺寸。结论:光学和近红外定量偏振法将在灰尘凝结的初始条件下提供观察基础,从而在形成行星磁盘中的行星形成。
Context: The size of the constituent particles (monomers) of dust aggregates is one of the most uncertain parameters directly affecting collisional growth of aggregates in planet-forming disks. Despite its importance, the monomer size has not yet been meaningfully constrained by disk observations. Aims: We attempt to derive the monomer size from optical and near-infrared (IR) polarimetric observations of planet-forming disks. Methods: We perform a comprehensive parameter survey on the degree of linear polarization of light scattered by dust aggregates, using an exact numerical method called the $T$-matrix method. We investigate the effect of the monomer size, aggregate size, porosity, and composition on the degree of polarization. The obtained results are then compared with observed polarization fractions of several planet-forming disks at optical and near-IR wavelengths. Results: It is shown that the degree of polarization of aggregates depends sensitively on the monomer size unless the monomer size parameter is smaller than one or two. Comparing the simulation results with the disk observations, we find that the monomer radius is no greater than $0.4~μ$m. The inferred monomer size is therefore similar to subunit sizes of the solar system dust aggregates and the maximum size of interstellar grains. Conclusions: Optical and near-IR quantitative polarimetry will provide observational grounds on the initial conditions for dust coagulation and thereby planetesimal formation in planet-forming disks.