论文标题

Capillaryx:一种用于实时使用深度学习实时分析医学图像的软件设计模式

CapillaryX: A Software Design Pattern for Analyzing Medical Images in Real-time using Deep Learning

论文作者

Abdou, Maged Abdalla Helmy, Ferreira, Paulo, Jul, Eric, Truong, Tuyen Trung

论文摘要

数字成像的最新进展,例如,捕获的像素数量增加意味着要从这些图像中处理和分析的数据量也有所增加。深度学习算法是分析此类图像的最先进,鉴于在使用大量数据量的数据量培训时,它们的准确性很高。然而,这样的分析需要相当大的计算能力,从而使这种算法时间和资源要求。通过使用第三方云服务提供商可以满足这种高需求。但是,使用此类服务​​分析医学图像会引起一些法律和隐私挑战,并不一定会提供实时结果。本文提供了一种计算体系结构,可以在本地和并行地使用深度学习实时分析医学图像,从而避免将数据上传到第三方云提供商所带来的法律和隐私挑战。为了使现代多核处理器有效地处理本地图像处理,我们利用并行执行来抵消深神经网络的资源密集型需求。我们专注于特定的医学工业案例研究,即对我们已经开发出工作系统的微循环图像中的血管进行量化。目前,它用于工业,临床研究环境中,作为电子卫生应用程序的一部分。我们的结果表明,我们的系统比其串行系统的速度快78%,比主奴隶并行系统体系结构快12%。

Recent advances in digital imaging, e.g., increased number of pixels captured, have meant that the volume of data to be processed and analyzed from these images has also increased. Deep learning algorithms are state-of-the-art for analyzing such images, given their high accuracy when trained with a large data volume of data. Nevertheless, such analysis requires considerable computational power, making such algorithms time- and resource-demanding. Such high demands can be met by using third-party cloud service providers. However, analyzing medical images using such services raises several legal and privacy challenges and does not necessarily provide real-time results. This paper provides a computing architecture that locally and in parallel can analyze medical images in real-time using deep learning thus avoiding the legal and privacy challenges stemming from uploading data to a third-party cloud provider. To make local image processing efficient on modern multi-core processors, we utilize parallel execution to offset the resource-intensive demands of deep neural networks. We focus on a specific medical-industrial case study, namely the quantifying of blood vessels in microcirculation images for which we have developed a working system. It is currently used in an industrial, clinical research setting as part of an e-health application. Our results show that our system is approximately 78% faster than its serial system counterpart and 12% faster than a master-slave parallel system architecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源