论文标题
关于渐近最小多项式的动力学
On Dynamics of Asymptotically Minimal Polynomials
论文作者
论文摘要
我们研究与非极性平面紧凑型集合相关的渐近极端多项式的动力学特性。特别是,如果这种多项式的零是统一的界限,我们证明,它们的brolin量度均匀地融合到E.的平衡度中,然后填充了E的平衡。 klimek拓扑中E的多项式凸壳。
We study dynamical properties of asymptotically extremal polynomials associated with a non-polar planar compact set E. In particular, we prove that if the zeros of such polynomials are uniformly bounded then their Brolin measures converge weakly to the equilibrium measure of E. In addition, if E is regular and the zeros of such polynomials are sufficiently close to E then we prove that the filled Julia sets converge to polynomial convex hull of E in the Klimek topology.