论文标题

在线RIS配置学习,用于任意大量$ 1 $ -BIT相位分辨率元素

Online RIS Configuration Learning for Arbitrary Large Numbers of $1$-Bit Phase Resolution Elements

论文作者

Stylianopoulos, Kyriakos, Alexandropoulos, George C.

论文摘要

最近,部署了强化学习(RL)方法,用于协调可重新配置智能表面(RISS)授权的无线通信,利用其在线优化功能。最常见的是,在基于RL的具有低分辨率相位可调元素的逼真的RIS的公式中,每种配置都被建模为一种独特的反射作用,从而导致由于搜索空间的指数性质而导致效率低下。在本文中,我们考虑使用具有1位相分辨率元件的RIS,并将它们的作用建模为包括可行反射系数的二进制矢量。然后,我们介绍了良好的深层Q网(DQN)和深层确定性政策梯度(DDPG)代理的两种变体,旨在有效探索二进制动作空间。对于DQN,我们利用Q功能的有效近似,而离散化后处理步骤则应用于DDPG的输出。我们的仿真结果表明,当考虑大规模RIS时,提出的技术在速率最大化目标方面大大优于基线。此外,在处理中等尺度的RIS大小时,基于基于配置的动作空间的常规DQN是可行的,后一种技术的性能与提出的学习方法相似。

Reinforcement Learning (RL) approaches are lately deployed for orchestrating wireless communications empowered by Reconfigurable Intelligent Surfaces (RISs), leveraging their online optimization capabilities. Most commonly, in RL-based formulations for realistic RISs with low resolution phase-tunable elements, each configuration is modeled as a distinct reflection action, resulting to inefficient exploration due to the exponential nature of the search space. In this paper, we consider RISs with 1-bit phase resolution elements, and model the action of each of them as a binary vector including the feasible reflection coefficients. We then introduce two variations of the well-established Deep Q-Network (DQN) and Deep Deterministic Policy Gradient (DDPG) agents, aiming for effective exploration of the binary action spaces. For the case of DQN, we make use of an efficient approximation of the Q-function, whereas a discretization post-processing step is applied to the output of DDPG. Our simulation results showcase that the proposed techniques greatly outperform the baseline in terms of the rate maximization objective, when large-scale RISs are considered. In addition, when dealing with moderate scale RIS sizes, where the conventional DQN based on configuration-based action spaces is feasible, the performance of the latter technique is similar to the proposed learning approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源