论文标题

MP2:通过尖锐和成对学习推荐推荐的动量对比方法

MP2: A Momentum Contrast Approach for Recommendation with Pointwise and Pairwise Learning

论文作者

Wang, Menghan, Guo, Yuchen, Zhao, Zhenqi, Hu, Guangzheng, Shen, Yuming, Gong, Mingming, Torr, Philip

论文摘要

如今,基于深度学习的推荐算法,二进制点式标签(又称隐式反馈)被大大利用。在本文中,我们讨论了这些标签的有限表现力可能无法适应不同程度的用户偏好,从而导致模型培训期间的冲突,我们称之为注释偏见。为了解决此问题,我们发现成对标签的软标记特性可以用于减轻点式标签的偏见。为此,我们提出了一个动量对比框架(MP2),该框架结合了方向和成对学习以进行推荐。 MP2具有三较高的网络结构:一个用户网络和两个项目网络。这两个项目网络分别用于计算点和成对损耗。为了减轻注释偏差的影响,我们执行动量更新,以确保一致的项目表示。对现实世界数据集的广泛实验证明了我们与最先进的建议算法的优越性。

Binary pointwise labels (aka implicit feedback) are heavily leveraged by deep learning based recommendation algorithms nowadays. In this paper we discuss the limited expressiveness of these labels may fail to accommodate varying degrees of user preference, and thus lead to conflicts during model training, which we call annotation bias. To solve this issue, we find the soft-labeling property of pairwise labels could be utilized to alleviate the bias of pointwise labels. To this end, we propose a momentum contrast framework (MP2) that combines pointwise and pairwise learning for recommendation. MP2 has a three-tower network structure: one user network and two item networks. The two item networks are used for computing pointwise and pairwise loss respectively. To alleviate the influence of the annotation bias, we perform a momentum update to ensure a consistent item representation. Extensive experiments on real-world datasets demonstrate the superiority of our method against state-of-the-art recommendation algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源