论文标题

地球的高分辨率冠层高度模型

A high-resolution canopy height model of the Earth

论文作者

Lang, Nico, Jetz, Walter, Schindler, Konrad, Wegner, Jan Dirk

论文摘要

植被高度的全球差异是全球碳周期的基础,是生态系统及其生物多样性功能的核心。地理空间明确,理想情况下,需要高度解决的信息来管理陆地生态系统,减轻气候变化并防止生物多样性丧失。在这里,我们介绍了2020年的10 m地面采样距离的第一个全球,壁壁式高度图。没有一个数据源符合以下要求:专用空间任务(例如GEDI)提供了稀疏的高度数据,具有前所未有的覆盖范围,而光学卫星图像(如Sentinel-2)如Sentinel-2在全球范围内提供了严格的观察,但无法直接测量侧面的结构。通过将GEDI与Sentinel-2融合,我们开发了一个概率的深度学习模型,以从地球上任何地方的Sentinel-2图像中检索冠层高度,并量化这些估计值中的不确定性。当估计卫星图像的冠层高度时,所呈现的方法通常会降低饱和效果,从而可以解决可能具有高碳库存的高檐篷。根据我们的地图,只有5%的全球陆地被高于30 m的树木覆盖。这样的数据在保护中起着重要作用,例如,我们发现这些高层檐篷中只有34%位于受保护区域内。我们的模型可以使一致,不确定性的全球映射构图,并支持正在进行的监控,以检测变更并为决策提供信息。该方法可以在森林保护方面进行持续的努力,并有可能促进气候,碳和生物多样性建模的进步。

The worldwide variation in vegetation height is fundamental to the global carbon cycle and central to the functioning of ecosystems and their biodiversity. Geospatially explicit and, ideally, highly resolved information is required to manage terrestrial ecosystems, mitigate climate change, and prevent biodiversity loss. Here, we present the first global, wall-to-wall canopy height map at 10 m ground sampling distance for the year 2020. No single data source meets these requirements: dedicated space missions like GEDI deliver sparse height data, with unprecedented coverage, whereas optical satellite images like Sentinel-2 offer dense observations globally, but cannot directly measure vertical structures. By fusing GEDI with Sentinel-2, we have developed a probabilistic deep learning model to retrieve canopy height from Sentinel-2 images anywhere on Earth, and to quantify the uncertainty in these estimates. The presented approach reduces the saturation effect commonly encountered when estimating canopy height from satellite images, allowing to resolve tall canopies with likely high carbon stocks. According to our map, only 5% of the global landmass is covered by trees taller than 30 m. Such data play an important role for conservation, e.g., we find that only 34% of these tall canopies are located within protected areas. Our model enables consistent, uncertainty-informed worldwide mapping and supports an ongoing monitoring to detect change and inform decision making. The approach can serve ongoing efforts in forest conservation, and has the potential to foster advances in climate, carbon, and biodiversity modelling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源