论文标题

在几何衰减的动态环境中,决策依赖性风险最小化

Decision-Dependent Risk Minimization in Geometrically Decaying Dynamic Environments

论文作者

Ray, Mitas, Drusvyatskiy, Dmitriy, Fazel, Maryam, Ratliff, Lillian J.

论文摘要

本文研究了数据分布取决于决策者的作用,并根据几何衰减过程动态发展,因此研究了预期损失最小化的问题。针对决策者具有一阶梯度甲骨文的信息设置的新颖算法,并引入了它们仅具有损失函数的设置。该算法以相同的基本原则运行:决策者在一个时期的长度上反复部署固定的决策,从而使动态变化的环境在更新决策之前充分混合。显示每种设置中的迭代复杂性与对数因素的现有速率和零阶随机梯度方法的现有速率相匹配。使用SFPARK动态定价试验研究中的现实世界数据,在“半合成”示例上评估了该算法。结果表明,宣布的价格会改善机构的目标(目标占用),同时总体上降低了停车率。

This paper studies the problem of expected loss minimization given a data distribution that is dependent on the decision-maker's action and evolves dynamically in time according to a geometric decay process. Novel algorithms for both the information setting in which the decision-maker has a first order gradient oracle and the setting in which they have simply a loss function oracle are introduced. The algorithms operate on the same underlying principle: the decision-maker repeatedly deploys a fixed decision over the length of an epoch, thereby allowing the dynamically changing environment to sufficiently mix before updating the decision. The iteration complexity in each of the settings is shown to match existing rates for first and zero order stochastic gradient methods up to logarithmic factors. The algorithms are evaluated on a "semi-synthetic" example using real world data from the SFpark dynamic pricing pilot study; it is shown that the announced prices result in an improvement for the institution's objective (target occupancy), while achieving an overall reduction in parking rates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源