论文标题

使用卷积自动编码器的非侵入性降低订购建模

Non-intrusive reduced-order modeling using convolutional autoencoders

论文作者

Halder, Rakesh, Fidkowski, Krzysztof, Maki, Kevin

论文摘要

在基于物理的建模和仿真中使用还原阶模型(ROM)几乎始终涉及使用线性还原基准(RB)方法,例如适当的正交分解(POD)。对于某些非线性问题,线性RB方法的性能差,无法为解决方案空间提供有效的子空间。近年来,非线性歧管用于ROM的吸引力已引起关注,显示出在线性方法上某些非线性问题的性能提高。通过使用自动编码器为解决方案空间提供非线性试验歧管,深度学习在这方面很受欢迎。在这项工作中,我们提出了一个非侵入性的ROM框架,用于使用卷积自动编码器(CAE)提供非线性溶液歧管的稳态参数化偏微分方程(PDE),并通过高斯过程回归(GPR)增强,以近似可观模型的扩展系数。当应用于涉及稳定不可压缩的Navier-Stokes方程来解决盖子驱动的腔问题时,这表明,与在许多ROM维度上使用POD和GPR相比,所提出的ROM在预测全订单状态方面提供了更大的性能。

The use of reduced-order models (ROMs) in physics-based modeling and simulation almost always involves the use of linear reduced basis (RB) methods such as the proper orthogonal decomposition (POD). For some nonlinear problems, linear RB methods perform poorly, failing to provide an efficient subspace for the solution space. The use of nonlinear manifolds for ROMs has gained traction in recent years, showing increased performance for certain nonlinear problems over linear methods. Deep learning has been popular to this end through the use of autoencoders for providing a nonlinear trial manifold for the solution space. In this work, we present a non-intrusive ROM framework for steady-state parameterized partial differential equations (PDEs) that uses convolutional autoencoders (CAEs) to provide a nonlinear solution manifold and is augmented by Gaussian process regression (GPR) to approximate the expansion coefficients of the reduced model. When applied to a numerical example involving the steady incompressible Navier-Stokes equations solving a lid-driven cavity problem, it is shown that the proposed ROM offers greater performance in prediction of full-order states when compared to a popular method employing POD and GPR over a number of ROM dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源